

Joint probabilities

10 marbles in a bag Sampling with replacement

$$
\begin{aligned}
& \operatorname{Pr}(B, S)=0.4 \\
& \operatorname{Pr}(W, S)=0.1 \\
& \operatorname{Pr}(B, D)=0.2 \\
& \text { (Cr }(W, D)=0.3
\end{aligned}
$$

Conditional probabilities

What's the probability that a marble is black given that it is dotted?

5 marbles satisfy the condition (D)
$\operatorname{Pr}(B \mid D)=\frac{2}{5}$

2 remaining marbles are black (B)

Marginal probabilities

Marginalizing over color yields the total probability that a marble is dotted (D)

$$
\begin{aligned}
\operatorname{Pr}(\mathbf{D}) & =\operatorname{Pr}(\mathbf{B}, \mathbf{D})+\operatorname{Pr}(\mathbf{W}, \mathbf{D}) \\
& =0.2+0.3 \\
& =0.5
\end{aligned}
$$

Marginalization involves summing all joint probabilities containing D

Marginalization

B W

Marginalizing over colors

Joint probabilities

B W

Marginalizing over "dottedness"
 B
 W

Bayes' rule

The joint probability $\operatorname{Pr}(B, D)$ can be written as the product of a conditional probability and the
probability of that condition
$\operatorname{Pr}(B \mid D) \operatorname{Pr}(D)$
$\operatorname{Pr}(\mathrm{B}, \mathrm{D}) \xrightarrow[\begin{array}{l}\text { Either } B \text { or } \mathrm{D} \\ \text { can be the } \\ \text { condition }\end{array}]{ }$
$\operatorname{Pr}(\mathrm{D} \mid \mathrm{B}) \operatorname{Pr}(\mathrm{B})$

Bayes' rule

Equate the two ways of writing $\operatorname{Pr}(B, D)$

$$
\operatorname{Pr}(\mathrm{B} \mid \mathrm{D}) \operatorname{Pr}(\mathrm{D})=\operatorname{Pr}(\mathrm{D} \mid \mathrm{B}) \operatorname{Pr}(\mathrm{B})
$$

Divide both sides by $\operatorname{Pr}(\mathrm{D})$ $\frac{\operatorname{Pr}(B \mid D) \operatorname{Pr}(D)}{\operatorname{Pr}(D)}=\frac{\operatorname{Pr}(D \mid B) \operatorname{Pr}(B)}{\operatorname{Pr}(D)}$

Bayes' rule

$$
\operatorname{Pr}(\mathrm{B} \mid \mathrm{D})=\frac{\operatorname{Pr}(\mathrm{D} \mid \mathrm{B}) \operatorname{Pr}(\mathrm{B})}{\operatorname{Pr}(\mathrm{D})}
$$

Bayes' rule (variations)

$$
\begin{aligned}
\operatorname{Pr}(B \mid D) & =\frac{\operatorname{Pr}(D \mid B) \operatorname{Pr}(B)}{\operatorname{Pr}(D)} \\
& =\frac{\operatorname{Pr}(D \mid B) \operatorname{Pr}(B)}{\operatorname{Pr}(B, D)+\operatorname{Pr}(W, D)}
\end{aligned}
$$

$\operatorname{Pr}(D)$ is the marginal probability of being dotted To compute it, we marginalize over colors

Bayes' rule (variations)

$$
\begin{aligned}
& \operatorname{Pr}(B \mid D)=\frac{\operatorname{Pr}(D \mid B) \operatorname{Pr}(B)}{\operatorname{Pr}(B, D)+\operatorname{Pr}(W, D)} \\
& \quad=\frac{\operatorname{Pr}(D \mid B) \operatorname{Pr}(B)}{\operatorname{Pr}(D \mid B) \operatorname{Pr}(B)+\operatorname{Pr}(D \mid W) \operatorname{Pr}(W)} \\
& \quad=\frac{\operatorname{Pr}(D \mid B) \operatorname{Pr}(B)}{\sum_{\theta \in\{B, W\}} \operatorname{Pr}(D \mid \theta) \operatorname{Pr}(\theta)}
\end{aligned}
$$

Bayes' rule in statistics

Prior probability of
Likelihood of hypothesis θ hypothesis θ

$$
\operatorname{Pr}(\theta \mid D)=\frac{\operatorname{Pr}(D \mid \theta) \operatorname{Pr}(\theta)}{\sum_{\theta} \operatorname{Pr}(D \mid \theta) \operatorname{Pr}(\theta)}
$$

Posterior probability of hypothesis θ

Marginal probability of the data (marginalizing over hypotheses)

The Bayesian Gist

- Take your prior beliefs about the model (substitution model, topology, branch lengths)
- Observe the likelihood of your data given this model
- Update your prior beliefs based on this to get your posterior

Prior Probability

- What is the initial weighting of models?

Why Bayesian?

All of the advantages of other model-based methods, plus:
(1) Explicit incorporation of prior hypotheses concerning models
(2) Calculation of posterior probabilities: the relative 'goodness' of models are taken into account

Bayes' rule in statistics

Prior probability of
Likelihood of hypothesis θ hypothesis θ

$$
\operatorname{Pr}(\theta \mid D)=\frac{\operatorname{Pr}(D \mid \theta) \operatorname{Pr}(\theta)}{\sum_{\theta} \operatorname{Pr}(D \mid \theta) \operatorname{Pr}(\theta)}
$$

Posterior probability of hypothesis θ

Marginal probability of the data (marginalizing over hypotheses)

The Likelihood Surface

For simple distributions (e.g. binomials for coinflipping), we can analytically integrate over the entire likelihood function

For horrendously complex distributions (e.g. likelihoods for all trees), we cannot do this

We could visit every point in 'model space' and
evaluate the likelihood. For many datasets this is a "not before the heat death of the universe" problem

Iterative Integration

The solution is a random walk through model space

Random steps can be accepted or rejected, with a preference for steps that increase the likelihood

Why does this help?

Cancellation of marginal likelihood

When calculating the ratio (R) of posterior densities, the marginal probability of the data cancels.

$$
\left.\begin{array}{l}
\frac{p\left(\theta^{*} \mid D\right)}{p(\theta \mid D)}=\frac{\frac{p\left(D \mid \theta^{*}\right) p\left(\theta^{*}\right)}{p(D)}}{\frac{p(D \mid \theta) p(\theta)}{p(D)}}=\frac{p\left(D \mid \theta^{*}\right) p\left(\theta^{*}\right)}{p(D \mid \theta) p(\theta)} \\
\begin{array}{c}
\text { Posterior } \\
\text { odds }
\end{array}
\end{array} \begin{array}{c}
\text { Apply Bayes' rule to } \\
\text { both top and bottom }
\end{array} \quad \begin{array}{c}
\text { Likelihood } \\
\text { ratio }
\end{array} \begin{array}{c}
\text { Prior } \\
\text { odds }
\end{array}\right]
$$

High-level Difference

Maximum likelihood: optimisation method

Bayesian: sampling method

Markov chain Monte Carlo

The past does not influence the future

Keep a record of where we've been

Steps in model space are proposed randomly

Procedure

(1) Start with a random model ψ
(2) Propose a change to a new model ψ^{\prime}
(3) Accept the change from ψ to ψ^{\prime} with probability

$$
=\min \left[\begin{array}{lll}
1, & \underbrace{\frac{f\left(X \mid \Psi^{\prime}\right)}{f(X)}}_{\text {likelihood ratio }} & \times-1 \\
\underbrace{1}_{\text {prior ratio }} & \times \underbrace{\frac{f(1)}{f(1)}}_{\text {proposal ratio }}
\end{array}\right]
$$

(Huelsenbeck et al., 2002)
(4) Add the current tree to the growing chain
(5) Goto 2

Goto 2???

- In theory (assuming certain basic properties of the chain), MCMC will sample every point in likelihood space in proportion to its posterior probability
- IF the chain is run for an infinite number of iterations

MCMC in Practice

Posterior Probability

- If no a priori preference is given to specific trees, the posterior probability of trees and bipartitions is equal to their frequency in the Markov chain

Posterior $\left(\int_{D}^{E} Y_{C}^{A}\right)=9 / 17 \sim 0.53$
Posterior $(\mathrm{ABC} \mid \mathrm{DE})=15 / 17 \sim 0.88$

Posteriors on TREES

- Simply the frequency of the tree (integrated over all branch lengths) in the Markov chain
- Addresses all phylogenetic hypotheses at once

Posteriors on TREES

- Can be very unstable!
- Practical example:
- 30-sequence alignment
- 3,000,000 iteration chain
- 30,000 trees saved in chain (1 / 100 thinning)
- >25,000 different trees!
- Most-frequent tree sampled twice, so posterior $=(2 / 30,000)$

Posteriors on SPLITS

- Far more stable (independent evaluation of tree features)
- Lose information about dependencies within tree

F

Interpreting Posteriors

- 'Confidence intervals’ of models
- Rank the models in decreasing order of PP, and take the set that corresponds to the top $\mathrm{x} \%$ (e.g., the top 95\%)
- May include multiple trees or splits, but will certainly EXCLUDE a lot more

Interpreting Posteriors

- Bayes factors
- The ratio of posterior probabilities for two hypotheses (models) H_{1} and H_{2}
$\frac{\mathrm{P}\left(\mathrm{H}_{1}\right)}{\mathrm{P}\left(\mathrm{H}_{2}\right)}=\mathrm{B}(x)$
Different rules of thumb for evaluating Bayes factors (see e.g. Jeffreys, H. (1961). Theory of Probability. Oxford: Clarendon Press.)

For instance:

$\frac{\mathrm{B}(\mathrm{x})}{1-3}$	Interpretation
Barely worth mentioning	
$3-10$	Moderate preference
$10-100$	Strong preference
$100+$	Overwhelming(!) preference

Markov chains in action!

- Evaluate progress using e.g. a log-likelihood plot

Markov chains in action!

- However, problems can arise

The chance of this happening increases with increasing model complexity (More parameters to worry about!)

A couple of solutions

- Metropolis-coupled MCMC: heated chains
- Cold chain: collects samples
- Heated chains are more likely to accept bad moves
- Chains can SWAP

Estimating divergence times

Bayes' theorem

Putting everything together

Warnock and Wright, EcoarXiv

Relaxed Phylogenetics and Dating with Confidence

Alexei J. Drummond ${ }^{\circledR \text { a }}$, Simon Y. W. Ho, Matthew J. Phillips, Andrew Rambaut ${ }^{\text {®* }}$
Department of Zoology, University of Oxford, Oxford, United Kingdom

In phylogenetics, the unrooted model of phylogeny and the strict molecular clock model are two extremes of a continuum. Despite their dominance in phylogenetic inference, it is evident that both are biologically unrealistic and that the real evolutionary process lies between these two extremes. Fortunately, intermediate models employing

Estimating divergence times (recent) using samples at or near internal nodes

Estimating divergence times (ancient) using the fossil record for calibration

See

- RevBayes https://revbayes.github.io/tutorials/
- BEAST https://beast.community/

Conclusion

- ML is currently the most widely-used method for phylogenetic inference
- It is computationally expensive
- Bayesian methods can take a long time but give you a probability distribution across trees, rather than simply the best* tree
- If you can parameterize it, you can sample from it!

Is a hypothesis

Significant Significance Questions

1. Do the data (that's usually the alignment) strongly support the relationships in the tree?
2. Is the recovered tree statistically better than all other possible trees?
3. Is a *tree* really the best explanation of the data?

Why ask these axkeasi questions?

Ask for a tree, get a tree

1 ACCGAGCAA
2 ACCGAGCAA
3 ACCGAGCAA
4 ACCGAGCAA

1 ACCGAATGA
2 ACCGAGCAG
3 GTTAGGCAG
4 GTTAGATGA

Problems with datasets

- Signal saturation - too many substitutions (and multiple substitutions!) between sequences
- Lack of signal - some short branches in the tree may lack supporting data or be sufficiently ancient to have been erased
- Misleading signals may be relatively strong

Reticulate evolution

Gene conversion / recombination

Addressing significance questions

1. Strength of support - resampling, subsampling, and simulation
2. Better than alternatives - Bayesian, paired-site comparisons
3. Treelike signal - phylogenetic networks

Basic Principles

- Resample from the distribution of data points (alignment columns) and see whether we get the same answer
- Do this a bunch of times (100-ish)
- Map the results onto the original tree

The nonparametric bootstrap test

- Resample with replacement from the original population
- Original alignment: n columns
- Bootstrapped alignment: still n columns
- But some columns will be missing, and some will be present more than once

Alignment
Resample the alignment
Bootstrapped
alignments

515621

D gaacgt
123456
A catcga
B ccgggt
C gcggga

364122

615343

\succ

414436

\square Inferred tree

The majority-rule consensus tree

Trees:

How many times each partition of species is found:

Support for tree features

Map bootstrap values onto the original tree

The bootstrap for a given grouping of taxa in the tree (supported by an edge) is equal to the frequency that grouping is observed among the bootstrap replicates
70% is often used as a support criterion (based on simulation)

What is the bootstrap doing?

- The bootstrap is randomly reweighting characters in the alignment, and assessing the impact on the phylogeny
- The probability of a given character being excluded (weight $=0$) is equal to $(1-1 / \mathrm{N})^{N}$

Asymptote $\cong 0.36788$

What is the bootstrap doing?

- The goal of the bootstrap is to simulate an infinite population (number of alignment columns) by considering a range of reweightings on the existing data

Limitation of nonparametric methods

- The (nonparametric) bootstrap method you have just seen are limited by the availability of reliable data
- This resampling procedure may therefore not cover the range of alternatives
- The parametric bootstrap simulates data on the proposed tree, and determines how often that tree can be recovered (COMPLEX...)

The nonparametric bootstrap is slooooooow

Alternatives to doing the likelihood search 100 times

- aLRT: Estimate local support using e.g. NNI and re-use likelihoods (since the bootstrap replicates are just the same columns re-weighted)
- SH-aLRT: use simulations to generate a realistic distribution of likelihoods
- Ultrafast bootstrap: Perform the search for all bootstrap replicates simultaneously. Keep a record of the best tree for each bootstrap replicate, and update as better trees are found

Accuracy matters

Problems with resampling in general

- Limited to asking the question, "to what extent do the data support the tree"?
- Do not directly address issues of:
- Second-best trees
- Bias in methods including model misspecification
- Non-tree-like signal

Best tree?

Is the best tree better than some other tree?

- We need to approach the data somewhat differently

So far - reshuffle data, but only infer results from complete data sets

Basic principles

- For two trees, compare the fit at each alignment site either quantitatively or qualitatively

The winning sites test: "An up-or-down vote"

4 sites favour the red tree
2 favour the blue tree
Use the binomal distribution to assess the significance of this difference

$$
\binom{n}{k} p^{k}(1-p)^{n-k}
$$

What is the probability that 4 or greater coin tosses will come up with the same result?

Need to evaluate the above formula for $n=6, k=0,1,2,4,5,6$ (two-tailed)

4 out of 6: $p=0.6875$ (not significant)

40 out of 60: $p=0.0124$
(significant at threshold of 0.05)

400 out of $600: p=2.3 \times 10^{-16}$

Paired t test

Mean of differences: $(-5.2+3.1+0.9+6.6+0.3-0.2) / 6=0.916$

Variance: 15.22

We compute a \boldsymbol{t} statistic using the following formula:

$$
t=\frac{\bar{x}}{\operatorname{var}} \sqrt{N}=0.148
$$

Compare to the t distribution for 5 degrees of freedom $p=0.888$

Paired sites vs t-test

the influence of small differences

These tests are very biased

- Statistical tests generally assume a random sample
- The (distributions of) trees we want to test are most definitely not!
- Less-biased tests often depend on more-sophisticated comparisons and (again) simulation

Summary

- Your trees may look great but be unsupported by the data
- Bootstrap tests: How strong is the support for my tree?
- Statistical comparisons of trees: How much better is this tree than that tree?

